Thermodynamic measures of cancer: Gibbs free energy and entropy of protein-protein interactions.

نویسندگان

  • Edward A Rietman
  • John Platig
  • Jack A Tuszynski
  • Giannoula Lakka Klement
چکیده

Thermodynamics is an important driving factor for chemical processes and for life. Earlier work has shown that each cancer has its own molecular signaling network that supports its life cycle and that different cancers have different thermodynamic entropies characterizing their signaling networks. The respective thermodynamic entropies correlate with 5-year survival for each cancer. We now show that by overlaying mRNA transcription data from a specific tumor type onto a human protein-protein interaction network, we can derive the Gibbs free energy for the specific cancer. The Gibbs free energy correlates with 5-year survival (Pearson correlation of -0.7181, p value of 0.0294). Using an expression relating entropy and Gibbs free energy to enthalpy, we derive an empirical relation for cancer network enthalpy. Combining this with previously published results, we now show a complete set of extensive thermodynamic properties and cancer type with 5-year survival.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biological Applications of Isothermal Titration Calorimetry

     Most of the biological phenomena are influenced by intermolecular recognition and interaction. Thus, understanding the thermodynamics of biomacromolecule ligand interaction is a very interesting area in biochemistry and biotechnology. One of the most powerful techniques to obtain precise information about the energetics of (bio) molecules binding to other biological macromolecules is isoth...

متن کامل

Thermodynamic Analysis for Cationic Surfactants Binding to Bovine Serum Albumin

In the present study, the binding isotherms for interaction of a homologous series of n-alkyltrimethyl ammonium bromides with bovine serum albumin (BSA) have been analyzed on basis of intrinsic thermodynamic quantities. In this regards, the intrinsic Gibbs free energy of binding, AGb(i,)„ has been estimated at various surfactant concentrations and its trend of variation for both binding sets ha...

متن کامل

Theoretical study of the solvent effects on the thermodynamic functions of Alanine and Valine Amino Acids

Using Gaussian 03, software the thermodynamic functions such as Gibbs free energy, G, Enthalpy, H, and Entropy, S, of Alanine and Valine amino acids were theoretically studied at different solvents. First, the Density Functional Theory (B3LYP) level with 3-21G, 6-31G and 6-31+G basis sets were employed to optimization of isolated Alanine and Valine amino acids in the gas phase. Moreover, Vib...

متن کامل

Theoretical Thermodynamic Study of Arginine and Lysine Amino Acids at different Solvents

The thermodynamic functions such as enthalpy, H°, Gibbs free energy, G°, and entropy, S°, of Arginine and Lysine amino acids were theoretically studied at different polar solvents by using ²Gaussian o3², software. First, the structural optimization of isolated Arginine and Lysine were done in the gas phase by applying the Density Functional Theory (B3LYP) level ...

متن کامل

Theoretical Thermodynamic Study of Solvent Effects on Serine and Threonine Amino Acids at Different Temperatures

The thermodynamic functions such as enthalpy (H), Gibbs free energy (G) and entropy (S) of Serineand Threonine amino acids were theoretically studied at different condition (solvents andtemperatures) by using Gussian o3, software. First, the structural optimization of isolated Serine andThreonine were done in the gas phase by using the Hartree-Fock (HF) level of theory with 3-21G, 6-31G and 6-3...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biological physics

دوره 42 3  شماره 

صفحات  -

تاریخ انتشار 2016